Chemistry Letters 1998

Ga₂O₃/Al₂O₃ Prepared by Sol-Gel Method as a Highly Active Metal Oxide-Based Catalyst for NO Reduction by Propene in the Presence of Oxygen, H₂O and SO₂

Masaaki Haneda,* Yoshiaki Kintaichi, Hiromichi Shimada, and Hideaki Hamada National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, Ibaraki 305

(Received October 16, 1997; CL-970801)

 Ga_2O_3/Al_2O_3 prepared by sol-gel method showed excellent activity for the selective reduction of NO with propene in the presence of H_2O , compared with Al_2O_3 , Ga_2O_3 and impregnated Ga_2O_3/Al_2O_3 . Its high activity was hardly influenced by the presence of SO_2 . It was suggested from the results of XPS studies that the presence of gallium oxide interacting strongly with alumina is responsible for the catalytic performance of Ga_2O_3/Al_2O_3 .

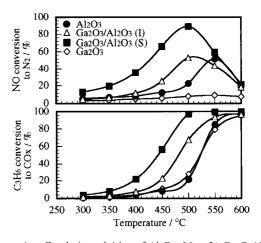
The selective catalytic reduction of NO with hydrocarbons in the presence of oxygen is attracting great attention recently as a practical measure to remove NOx in diesel and lean burn engine exhausts. Although most of the reports have been related to zeolite-based catalysts, we also found the activity of metal oxides for this reaction. Among various metal oxide-based catalysts, metal-supported alumina has been studied most intensively because of its high activity and stability. Miyadera and Yoshida reported that Ga/Al_2O_3 was one of the highly active metal-supported alumina catalysts for NO reduction by propene. However, the activity was greatly decreased by coexisting H_2O . Recently, Shimizu et al. investigated the catalytic performance of Ga_2O_3/Al_2O_3 prepared by impregnation method for the selective reduction of NO with methane and found that the activity increased with increasing gallium loading up to 33 wt%. In the

present work, we studied the catalytic performance of

 $Ga_{2}O_{3}/Al_{2}O_{3}$ prepared by different methods and found that

Ga₂O₃/Al₂O₃ prepared by sol-gel method showed quite high

activity for NO reduction by propene in the presence of O2, H2O


and SO₂.

Al₂O₃ was synthesized by hydrolysis of aluminium(III) triisopropoxide (AIP) in the same manner as described in a previous paper. 6 Ga₂O₃ was prepared from gallium hydroxide obtained by adding urea to an aqueous solution of gallium(III) nitrate and stirring at 90 °C for 10 h. Ga₂O₃/Al₂O₃ catalysts (abbreviated as $Ga_2O_3/Al_2O_3(I)$ and (S)) were prepared by two different methods. Ga₂O₃/Al₂O₃(I) was prepared by impregnating above-mentioned alumina with an aqueous solution of gallium(III) nitrate. Ga₂O₃/Al₂O₃(S) was synthesized by sol-gel method using a mixed solution of AIP and gallium(III) nitrate dissolved in ethylene glycol. All the catalyst precursors were dried at 110 °C, followed by calcination at 600 °C for 5 h in flowing air. The gallium loading for Ga₂O₃/Al₂O₃(I) and(S) was fixed at 30 wt% as Ga₂O₃, unless otherwise stated. BET surface area was found to be as follows : Al_2O_3 200 m^2g^{-1} , Ga_2O_3 15 m^2g^{-1} , $Ga_2O_3/Al_2O_3(I)$ 140 m^2g^{-1} , $Ga_2O_3/Al_2O_3(\bar{S})$ 200 m^2g^{-1}

The catalytic activity was measured by using a fixed bed flow reactor. A feed gas mixture containing 900 ppm NO, 860 ppm propene, 10% O₂, 9.1% H₂O and 0 or 100 ppm SO₂ diluted in helium was fed to 0.2 g of a catalyst at a rate of 66 cm³min⁻¹ (W/F=0.18 gscm⁻³, SV=10000h⁻¹), unless otherwise specified. In the case of the experiments using the reaction gas mixture

containing SO₂, the catalyst was pre-treated at 500 °C for 16 h in a flowing gas containing 300 ppm SO₂ diluted in air, in order to stabilize the catalyst. The effluent gas was analyzed by gas chromatography. The catalytic activity was expressed by the conversion of NO into N₂ and that of propene into COx (CO+CO₂). For catalyst characterization, XPS measurements were made in the regions of Ga_{2p} and Al_{2p}. The binding energy was corrected by the carbons contaminated. The peak area ratio (Ga_{2p}/Al_{2p}) was corrected by dividing the peak area, which was estimated through wave separation of XPS spectra, by the relative atomic sensitive factors.

Figure 1 shows the catalytic activity of Al_2O_3 , $Ga_2O_3/Al_2O_3(1)$, $Ga_2O_3/Al_2O_3(S)$ and Ga_2O_3 for the selective reduction of NO with propene in the presence of H_2O . Ga_2O_3 showed very little activity for NO reduction. Al_2O_3 and $Ga_2O_3/Al_2O_3(I)$ gave almost the same maximum NO conversion, although the effective temperature for NO reduction on the latter catalyst was lower than that on the former. Apparently, $Ga_2O_3/Al_2O_3(S)$ showed excellent catalytic activity compared to Al_2O_3 , $Ga_2O_3/Al_2O_3(I)$ and Ga_2O_3 . Since it is well known that sol-gel technique is capable of preparing catalysts with highly dispersed species, 6 the presence of gallium oxide interacting strongly with alumina would be related to the high activity of $Ga_2O_3/Al_2O_3(S)$.

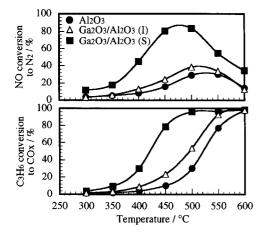


Figure 1. Catalytic activities of Al_2O_3 , 30 wt% $Ga_2O_3/Al_2O_3(I)$, 30 wt% $Ga_2O_3/Al_2O_3(S)$ and Ga_2O_3 for NO reduction by propene in the presence of H_2O . Reaction conditions: NO=900 ppm, C_3H_6 =860 ppm, O_2 =10%, H_2O =9.1%, W/F=0.18 gscm⁻³.

The catalytic activity for NO reduction by propene in the presence of H_2O and SO_2 was also measured for Al_2O_3 , $Ga_2O_3/Al_2O_3(I)$ and $Ga_2O_3/Al_2O_3(S)$. As can be seen by comparing Figures 1 and 2, the activity of Al_2O_3 and $Ga_2O_3/Al_2O_3(I)$ for NO reduction was depressed considerably by SO_2 , whereas SO_2 inhibited slightly propene oxidation. On the

182 Chemistry Letters 1998

other hand, it is quite surprising that NO conversion on $Ga_2O_3/Al_2O_3(S)$ was not decreased but increased by SO_2 at temperatures below 450 °C. Since propene conversion to COx was also increased, the enhancement of NO reduction activity of $Ga_2O_3/Al_2O_3(S)$ by SO_2 is not due to the inhibition of propene combustion by O_2 which decreases NO reduction selectivity. Probably SO_2 adsorption improves the catalytically active sites of $Ga_2O_3/Al_2O_3(S)$ for NO reduction.

Figure 2. Catalytic activities of Al₂O₃, 30 wt% $Ga_2O_3/Al_2O_3(I)$ and 30 wt% $Ga_2O_3/Al_2O_3(S)$ for NO reduction by propene in the presence of H₂O and SO₂. Reaction conditions: NO=900 ppm, C₃H₆=860 ppm, O₂=10%, H₂O=9.1%, SO₂=100 ppm, W/F= 0.18 gscm⁻³.

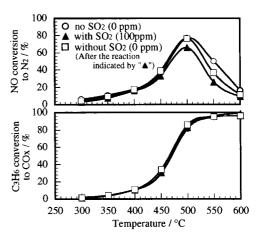

The results of XPS measurements were summarized in Table The peak area ratio (Ga2p/Al2p) for Ga2O3/Al2O3(I) was higher than that for Ga₂O₃/Al₂O₃(S), suggesting that most of Ga₂O₃ was deposited on the surface of Ga₂O₃/Al₂O₃(I). The binding energy of Ga₂P for Ga₂O₃/Al₂O₃(S) was higher than that for Ga₂O₃/Al₂O₃(I). In addition, a difference in the Auger parameter of Ga species, which is the sum of the binding energy of Ga2p and the Auger kinetic energy of Ga(MNN), was observed between Ga₂O₃/Al₂O₃(I) and (S). Wagner et al. measured the Auger parameter of Al species for several samples and revealed that it decreased with increasing tetrahedral Al ions. Ga₂O₃ is also known to have both tetrahedral and octahedral Ga ions. Shimizu et al.5 reported that low-coordinated Ga ions, i.e. tetrahedral Ga ions, is related to the high activity of Ga₂O₃/Al₂O₃ for NO reduction by methane. Consequently, it is suggested that the high catalytic performance of Ga₂O₃/Al₂O₃(S) is induced by a lot of tetrahedral Ga ions.

Table 1. Summary of peak area ratios, line energies and Auger parameters obtained for Ga₂O₃, 30 wt% Ga₂O₃/Al₂O₃(I) and 30 wt% Ga₂O₃/Al₂O₃(S)

	Peak area	Binding	Auger kinetic	Auger
Catalyst	ratio	energy	energy	parameter ^a
	Ga2p/Al2p	Ga2p / eV	Ga(мии)/ eV	/ eV
Ga ₂ O ₃		1118.10	1063.00	2181.10
Ga2O3/Al2O3 (I)	0.189	1118.37	1061.99	2180.36
Ga2O3/Al2O3 (S)	0.147	1118.53	1061.62	2180.15

^aAuger parameters are the sum of the binding energy of Ga_{2p} and the Auger kinetic energy of Ga(MNN).

It was found that the optimum loading of Ga_2O_3 for Ga₂O₃/Al₂O₃(S) was 50 wt%. Figure 3 shows the catalytic activity of 50 wt% Ga₂O₃/Al₂O₃(S) in the presence of H₂O and SO₂ at SV=40000h⁻¹ The maximum NO conversion was as high as 80% at 500 °C in the absence of SO2. The addition of SO₂ into the reaction gas mixture caused a slight decrease of NO conversion. However, the maximum NO conversion of 65% was still attained at 500 °C. As described before, promotional effect of SO₂ was observed on 30 wt% Ga₂O₃/Al₂O₃(S) at SV=10000h⁻¹, while on 50 wt% Ga₂O₃/Al₂O₃(S) negative effect of SO₂ was recognized. Since it was confirmed in separate experiments that SO₂ enhanced NO reduction on 30 wt% Ga₂O₃/Al₂O₃(S) even at SV=40000h⁻¹, the effect of SO₂ would be dependent upon Ga₂O₃ content of the catalyst. The surface structure of the catalyst might be different depending on Ga₂O₃ content. The initial NO conversion on 50 wt% Ga₂O₃/Al₂O₃(S) was also restored by removing SO₂ from the reaction gas mixture. This means that the effect of SO₂ is not irreversible catalyst deterioration but reversible reaction inhibition.

Figure 3. Catalytic activities of 50 wt% $Ga_2O_3/Al_2O_3(S)$ for NO reduction by propene in the presence of H_2O and SO_2 at $SV=40000 \ h^{-1}$. Reaction conditions: NO=900 ppm, $C_3H_6=860$ ppm, $O_2=10\%$, $H_2O=9.1\%$, $SO_2=0$ or 100 ppm, W/F=0.05 gscm⁻³.

In conclusion, it was confirmed that $Ga_2O_3/Al_2O_3(S)$ prepared by sol-gel method showed excellent activity for the selective reduction of NO with propene in the presence of H_2O and SO_2 . The presence of tetrahedral Ga ions is probably related to the catalytic performance of Ga_2O_3/Al_2O_3 .

References

- M.Iwamoto, H.Yahiro, Y.Yu-u, S.Shundo, and N.Mizuno, Shokubai (Catalyst), 32, 430 (1990).
- 2 Y.Kintaichi, H.Hamada, M.Tabata. M.Sasaki, and T.Ito, Catal.Lett., 6, 239 (1990).
- 3 H.Hamada, Catal. Today, 22, 21 (1994).
- 4 T.Miyadera and K.Yoshida, Chem. Lett., 1993, 1483.
- 5 K.Shimizu, M.Takamatsu, K.Nishi. H.Yoshida, A.Satsuma and T.Hattori, J.Chem.Soc., Chem.Commun., 1996, 1827.
- 6 M.Haneda, T.Mizushima, N.Kakuta, A.Ueno, Y.Sato, S.Matsuura, K.Kasahara, and M.Sato, Bull. Chem. Soc. Jpn., 66, 1279 (1993).
- 7 C.D.Wagner, H.A.Six, W.T.Jansen, and J.A.Taylor, Appl.Surface Sci., 9, 203 (1981).
- 8 S.Geller, J. Chem. Phys., 33, 676 (1960).